Patient Safety: Medication-Induced Hyperglycemia and Diabetes

Devra Dang, Pharm.D., BCPS, CDCES, FNAP Associate Clinical Professor UConn School of Pharmacy

Learning Objectives

- List major causative agents leading to hyperglycemia and diabetes mellitus and their putative mechanisms
- Describe clinical manifestations of medicationinduced hyperglycemia
- Identify preventive and management strategies for medication-induced hyperglycemia

1

Disclosure Statement

 I have no actual or potential conflict of interest with the content of this presentation. **AUDIENCE POLL**

- 45 yo AA male with schizophrenia, HTN, obesity, asthma, and type 2 diabetes diagnosed 3 years ago.
- He's currently taking clozapine 300 mg/day, fluticasone/salmeterol DPI 500/50 mcg bid, albuterol MDI prn, metformin 1,000 mg bid, sitagliptin 100 mg qday, and atorvastatin 20 mg daily.

3

4

AUDIENCE POLL

- A prescriber asks for your opinion: which medication could have led to the development of this patient's type 2 diabetes?
- A. Clozapine
- B. Fluticasone
- C. Atorvastatin
- D. None of the above

Hyperglycemia Pathophysiology

- Decreased insulin secretion or destruction of pancreatic beta cells
- · Insulin resistance
- Liver
- Muscle
- Adipocytes
- · Weight gain

5

Mechanisms of Medication-Induced Hyperglycemia and Diabetes

- · Alterations of insulin secretion
- · Changes in insulin sensitivity
- Changes in gluconeogenesis or glucose metabolism
- · Direct cytotoxic effects on pancreatic beta-cells
- · Drug-induced pancreatitis
- · Direct vs. indirect drug effect
 - Unmasking of hyperglycemia in at risk individuals
- Unknown

7

Morbidity and Mortality of Medication-Induced Hyperglycemia and Diabetes

- · Hyperglycemic symptoms
- · Hyperglycemic emergencies
- Hyperglycemia may resolve upon discontinuation of drug in some patients but may also be permanent in others →
 - Prediabetes
 - Permanent diagnosis of diabetes (some patients may be insulin-dependent)
- Micro- and macrovascular complications of diabetes can occur if the hyperglycemia is persistent

8

Differential Diagnoses*

- · Cushing's disease or Cushing's syndrome
- · Liver cirrhosis
- · Metabolic acidosis
- · Pancreatitis
- Parenteral nutrition therapy (dextrose administration)
- · Renal failure
- · Stress hyperglycemia
- Determine by evaluating temporal relationship and possibly through drug withdrawal and rechallenge

*Not an all-inclusive list

9

Risk Factors

- Dose
- Use of more than one drug that can induce hyperglycemia
- Drug interactions
 - Pharmacokinetic
 - Pharmacodynamic
- Underlying disease states (e.g. HTN, schizophrenia)

10

Risk Factors

- Patients with underlying risk factors for type 2 diabetes mellitus
 - age ≥ 45 years
 - family history (1st degree relative) of diabetes
 - race/ethnicity (e.g., African-Americans, Hispanic-Americans, Native Americans, Asian-Americans, and Pacific Islanders)
 - overweight or obese: BMI \geq 25 kg/m² (\geq 23 kg/m² in Asians)
 - habitual physical inactivity

ADA Standards of Medical Care in Diabetes – 2021.

Risk Factors

- Patients with underlying risk factors for type 2 diabetes mellitus
 - hypertension (≥ 140/90 mmHg in adults)
 - HDL-C \leq 35 mg/dl and/or a TG \geq 250 mg/dl
 - h/o cardiovascular disease
 - history of gestational diabetes mellitus
 - polycystic ovary syndrome
 - previously identified impaired fasting glucose or impaired glucose tolerance
 - -HIV

ADA Standards of Medical Care in Diabetes – 2021

11 12

Major Causative Agents

- Atypical antipsychotics
- · Calcineurin inhibitors
- Diazoxide
- Fluoroquinolones mainly gatifloxacin
- · Glucocorticoids
- Mammalian target of rapamycin (mTOR) inhibitors
- Niacin
- Pentamidine
- Protease inhibitors & NRTIs
- · Somatostatin analogs
- Tyrosine kinase inhibitors

Not an all-inclusive list

Commonly Prescribed Causative Agents

- · Glucocorticoids
- · Atypical antipsychotics
- · Protease inhibitors
- · HMG CoA reductase inhibitors
- · Thiazide diuretics
- · Beta blockers
- Combination oral contraceptives, menopause hormone therapy
- · Fluoroquinolones mainly gatifloxacin

Not an all-inclusive list

13

Glucocorticoids

- · Mechanisms of drug-induced hyperglycemia
 - ↑ gluconeogenesis
 - ↑ insulin resistance
 - ↓ pancreatic insulin secretion
 - ↑ Appetite and weight
- · Severity & incidence depend on
 - Dose
 - Route of administration po & IV > topical & inhaled
 - Duration of use
 - Pre-existing risk factors

Glucocorticoids

- Typical presentation of ↑ BG
 - Rise in mid-morning BG, continues throughout the day
 - Matches onset of effect of prescribed glucocorticoid
 - Check BG 1-2 hour post-lunch or pre-dinner
 - Elevated BG if higher doses (eg, prednisone≥ 40 mg/day)
- Other symptoms of supraphysiologic glucocorticoid administration likely present

15

16

14

Glucocorticoids

- Treatment
 - Close monitoring and escalation of existing DM medication therapy
 - Oral DM medications?
 - Depend on onset of effect
 - Insulin
 - NPH and premixes
 - Long-acting insulin + bolus insulin

NPH Insulin

Example – administration at 7am

Peak 4-10 hrs: 11am-5pm

Onset 2-4
hrs:9-11au

Duration 10:16 hrs: 5pm-11pm

Breakfast Lunch

Dinner

AUDIENCE POLL

- ■Which of the following clinical manifestation has been reported with olanzapine?
- A. Type 2 diabetes
- B. DKA
- C. Weight gain
- D. All of the above

20

Atypical Antipsychotics

- · Mechanisms of drug-induced hyperglycemia (proposed)
 - ↓ peripheral insulin sensitivity
 - $-\downarrow$ insulin secretion
 - promote weight gain
- Olanzapine & clozapine > risperidone, paliperidone, & quetiapine > ziprasidone, aripiprazole, iloperidone, lurasidone, & asenapine

	Risk of weight gain	Risk of diabetes*	D ₂ dopamine	5HT _{2c} serotonin	5HT _{1a} serotonin	M ₃ muscarinic	α ₂ adrenergic	H ₁ histamine
Role in weight regulation			/	1				1
Role in insulin secretion			/		/	1	1	
First-generation antipsychotic								
Chlorpromazine	+++	+++	++++	++++	+	++++	+	++++
Perphenazine	+	+	++++	++++	+	+	+	+++
Haloperidol	++	+	++++	++	_	+	+	+/-
Second-generation antipsychotic								
Clozapine	+++	+++	+++	***	++	+++	**	+++
Olanzapine	+++	+++	+	***	+	+++	+	+++
Quetiapine	++	++	+	*	+	+	+++	**
Risperidone	++	++	+++	++++	++	-	****	++
Ziprasidone	+	+	+++	++++	++++	-	++	+
Aripiprazole	+	+	++++	+++	++++	-	++	+
Paliperidone	++	+	+++	++++	+	-	+++	++
Lurasidone	Ţ	+	++++	++	++++	_	N/A	

22

21

Antipsychotics – Monitoring Recs from ADA/AACE/APA/NAASO (2004)

	Base- line	4 wks	8 wks	12 wks	q3mo	qYear	q5yrs
Person al/fam- ily hx	Х					Х	
Wt (BMI)	Х	Х	Х	Х	Х		
WC	Х					Х	
bp	Х			Х		Х	
FPG	Х			Х		Х	
Fasting lipids	Х			Х	Diabei	tes Care 20	X 04; 27:596-

Protease Inhibitors

- · Mechanisms of drug-induced hyperglycemia
 - ↑ insulin resistance directly or indirectly
 - promote lipodystrophy
 - – ↓ insulin secretion
- Example protease inhibitors
 - Ritonavir, atazanavir, indinavir, amprenavir, tipranavir,
- · Protease inhibitors differ in degree of druginduced hyperglycemia
 - Appears to be lowest with atazanavir

Nucleoside reverse transcriptase inhibitors (NRTIs)

- Mechanisms of drug-induced hyperglycemia
 - ↑ insulin resistance
 - promote lipodystrophy
 - pancreatitis
 - · more common with didanosine and stavudine
 - inhibit insulin release secondary to hypokalemia – didanosine

HMG-CoA Reductase Inhibitors

- · Mechanisms of drug-induced hyperglycemia
 - ↓ peripheral insulin sensitivity
 - ↓ insulin secretion

25

28

HMG-CoA Reductase Inhibitors

- · Increased incidence of DM seen with
 - Atorvastatin worse glycemic control with atorvastatin 80 mg/d compared to pravastatin 40 mg/d in the Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) substudy
 - Rosuvastatin 26% increase in DM compared to placebo in the Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) study
 - Women's Health Initiative (WHI) 48% increased risk for DM in postmenopausal women taking statins (appears to be class effect unrelated to potency or individual statin)
 - Meta-analyses also show small increase in risk of DM

HMG-CoA Reductase Inhibitors

- However....the West of Scotland Coronary Prevention Study (WOSCOPS) reported a 30% decrease in the incidence of diabetes patients (men 45-64 yo) treated with pravastatin 40 mg/d
- 2/28/2012 FDA change in labeling to include warning that "increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors" for all statins except pravastatin

29

30

HMG-CoA Reductase Inhibitors

- 2010 meta-analysis of 13 statin RCT with 91,140 patients
 - NNH 255 over 4 years (OR 1.09)
 - However, 5.4 MACE (CHD death, non-fatal MI) prevented
- 2013 meta-analysis of statin RCTs with 113,394 patients
 - Lowest risk with pravastatin
 - Intermediate risk with atorvastatin
 - Highest risk with rosuvastatin (25% ↑ risk)
 Sattar N et al. Lancet 2010;375:735-42.

Pio Navarese et al. Am J Cardiol 2013; 111:1123-30.

HMG-CoA Reductase Inhibitors Evaluating Risks versus Benefits

- Rosuvastatin's JUPITER study
 - RR: 28% increase in DM compared to placebo
 - Absolute risk: 1.2% in placebo, 1.5% in rosuvastatin 20 mg arm
 - Study enrolled patients at high risk for DM (but not diagnosed with DM at baseline)
 - In patients <u>with</u> ≥1 DM risk factors, 134 CV events or deaths were avoided for every 54 new cases of DM
 - In patients without a major DM risk factor, 0 new cases of DM diagnosed, 86 total CV events or deaths prevented

Ridker PM et al. Lancet 2012; 380:565-71

HMG-CoA Reductase Inhibitors

Evaluating Risks versus Benefits

- In non-diabetic patients with risk factors for diabetes
 - The absolute risk increase is small
 - The benefits on CVD reduction still outweigh the risk of diabetes in most patients
 - Monitor non-diabetic patients on statin therapy for development of diabetes

HMG-CoA Reductase Inhibitors

Evaluating Risks versus Benefits

- · In diabetic patients
 - There may be a slight worsening of glycemic control
 - The benefits on CVD reduction in most patients outweigh the risk of hyperglycemia
 - Monitor glucose and A1c (as usual) and adjust therapy accordingly (as usual)
- Statin therapy is recommended by both the ADA and AACE/ACE guidelines in diabetic patients to prevent ASCVD

33

Pentamidine

- Mechanisms of drug-induced hyperglycemia
 - Direct cytolytic effects on pancreatic beta cells
 - causes hypoglycemia initially
 - Effect may be irreversible
 - Pancreatitis

Assessment and Management

35 36

AUDIENCE POLL

- 45 yo AA male with schizophrenia x 5 years, HTN x 5 years, obesity, asthma x 20 years, and type 2 diabetes diagnosed 3 years ago.
- He's currently taking clozapine 300 mg/day (since last year), fluticasone/salmeterol DPI 500/50 mcg bid (x 15 years), albuterol MDI prn, metformin 1,000 mg bid, sitagliptin 100 mg qday, and atorvastatin 20 mg daily (x 6 months).

AUDIENCE POLL

- A prescriber asks for your opinion: which medication could have led to the development of this patient's type 2 diabetes?
- A. Clozapine
- B. Fluticasone
- C. Atorvastatin
- D. None of the above

37 38

AUDIENCE POLL

- 45 yo AA male with schizophrenia x 5 years, HTN x 5 years, obesity, asthma x 20 years, and type 2 diabetes diagnosed 3 years ago.
- He's currently taking clozapine 300 mg/day (since last year), fluticasone/salmeterol DPI 500/50 mcg bid (x 15 years), albuterol MDI prn, metformin 1,000 mg bid, sitagliptin 100 mg qday, and atorvastatin 20 mg daily (x 6 months).

Preventive Strategies

- Avoid/minimize administration of more than one drug that can induce hyperglycemia
- Avoid/minimize administration of drugs that may have pharmacokinetic or pharmacodynamic drug interactions with suspected drug
- Use lowest dose for the shortest duration if possible

39 40

Preventive Strategies

- Obtain baseline fasting plasma glucose (FPG) prior to initiation of therapy
- · Monitor FPG and ppBG as clinically indicated
- · Monitor for symptoms of hyperglycemia
- · Monitor weight at each office visit

Management

- · Discontinue or reduce dose if possible
- · Minimize duration of use
- Administer antidiabetic medications if patient develops diabetes mellitus
- · Dietary changes
- Exercise
- Monitor for and management long-term complications of DM

41 42

Patient Education

- Relative risks versus benefits of medication(s)
- Importance of monitoring and follow-up testing
- More frequent blood glucose monitoring (if already with diabetes)
- When to discontinue medication(s)
- · Signs and symptoms of hyperglycemia

Signs and Symptoms of Hyperglycemia

- · Mild to moderate
 - Excessive thirst and polydipsia
 - Polyuria
 - Blurry vision
 - Increased fatigue
 - Unexplained weight loss
 - Polyphagia

43 44

Signs and Symptoms

- Severe
 - Nausea and vomiting
 - Lethargy
 - Obtundation
 - Abdominal pain
 - Breath with fruity odor
 - Dehydration
 - Metabolic acidosis
 - Coma