Breaking the Mold: Novel Mechanisms in Psychiatry's New Kids on the Block

Kristin Waters, PharmD, BCPS, BCPP Associate Clinical Professor University of Connecticut School of Pharmacy Disclosures

Dr. Kristin Waters, faculty for this CE activity, has no relevant financial relationship(s) with ineligible companies to disclose.

2

Learning Objectives

- Describe the unique mechanisms of action of xanomeline-trospium in the management of schizophrenia and dextromethorphan-containing medications in the management of major depressive disorder
- · Distinguish between adverse effect profiles of new psychiatric medications compared to traditional antipsychotics and antidepressants
- Identify appropriate candidates for new psychiatric medications based on knowledge of efficacy, safety, and patient-specific factors

Schizophrenia & Xanomeline/Trospium

3

Schizophrenia: Background

- Serious mental illness with prevalence of ${\sim}1\%$
- · Associated with a high degree of morbidity:
 - Common co-occurring conditions: Cardiovascular disease, dyslipidemia, obesity, hypertension, diabetes, substance use disorders
 - Reduced quality of life
 - Treatment-related adverse effects
 - Homelessness
 - Stigma, social isolation
 - Family/caregiver burdenFinancial burden
- · Among the top 15 leading causes of disability worldwide
- · Increased mortality: Lifespan may be decreased by an average of 28.5 years

MT, et al. Schizophrenia (Heidelb). 2024; Olfson M, et al. JAMA Psychiatry. 2015; GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Lancet. 2017

Schizophrenia: Symptoms • Hallucinations
• Delusions
• Disorganized speech Positive symptoms: Grossly disorganized or catatonic behavior Blunted affect Negative AlogiaAvolition symptoms: • Anhedoni: Amotivation Difficulty maintaining attention
 Deficits in working memory and long-term memory
 Deficits in executive function Cognitive symptoms:

5 6

Schizophrenia: Pathophysiology

- · Heterogenous and not fully understood
- · Anatomical changes
- · Neurotransmitter changes:

 - Dysfunction of serotonin, glutamate, GABA
 - Cholinergic system dysfunction

Schizophrenia Treatment Guidelines

	APA 2020	BAP 2020
First-line	Second-generation antipsychotic (SGA) First-generation antipsychotic (FGA) Oral or long-acting injectable (LAI)	SGA FGA (lower dose preferred)
Second-line	SGA FGA Oral or LAI	SGA FGA LAI if pt nonadherent
Third-line	Clozapine	Clozapine

7

9

Audience Question 1

What is the mechanism of action of traditional antipsychotic medications in the $treatment\ of\ schizophrenia?$

- A. Serotonin receptor antagonism
- B. Dopamine receptor antagonism
- C. Glutamate receptor antagonism
- D. GABA receptor antagonism

Audience Question 1

What is the mechanism of action of traditional antipsychotic medications in the treatment of schizophrenia?

- A. Serotonin receptor antagonism
- B. Dopamine receptor antagonism
- C. Glutamate receptor antagonism
- D. GABA receptor antagonism

Audience Question 2

What year was the first antipsychotic approved by the FDA?

- A. 1944
- B. 1954
- C. 1964
- D. 1974

Audience Question 2

What year was the first antipsychotic approved by the FDA?

- A. 1944
- B. 1954

10

- C. 1964
- D. 1974

Audience Question 3

Which of the following symptoms of schizophrenia is more likely to respond to treatment with an antipsychotic?

- A. Anhedonia
- B. Concentration difficulties
- C. Auditory hallucinations
- D. Blunted affect

Audience Question 3

Which of the following symptoms of schizophrenia is more likely to respond to treatment with an antipsychotic?

- A. Anhedonia
- B. Concentration difficulties
- C. Auditory hallucinations
- D. Blunted affect

13 14

Schizophrenia: Pathophysiology

- · Heterogenous and not fully understood
- · Anatomical changes
- Neurotransmitter changes:

 - DA hypofunction in mesolimbic pathway→ positive symptoms
 DA hypofunction in mesocortical pathway (frontal cortex) → negative and cognitive symptoms
 Dysfunction of serotonin, glutamate, GABA

 - Cholinergic system dysfunction

First-Generation	Antipsychotics
------------------	----------------

- · "Typical" antipsychotics
- Block post-synaptic D₂ receptors
- Longer receptor occupancy compared to SGAs
 Other receptors may be affected → differences in adverse effect profiles

Generic Name	Brand Name	Potency
Chlorpromazine	Thorazine	Low
Thioridazine	Mellaril	Low
Loxapine	Loxitane	Mid
Perphenazine	Trilafon	Mid
Fluphenazine	Prolixin	High
Trifluoperazine	Stelazine	High
Thiothixene	Navane	High
Haloperidol	Haldol	High

15 16

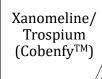
Generic Name	Brand Name
Aripiprazole	Abilify
Asenapine	Saphris
Brexpiprazole	Rexulti
Cariprazine	Vraylar
Clozapine	Clozaril
Iloperidone	Fanapt
Lumateperone	Caplyta
Lurasidone	Latuda
Paliperidone	Invega
Olanzapine	Zyprexa
Olanzapine/Samidorphan	Lybalvi
Quetiapine	Seroquel
Risperidone	Risperdal
Ziprasidone	Geodon

Second-Generation Antipsychotics

- "Atypical" antipsychotics
- Block D₂ and 5-HT₂ receptors
 - Some have partial D₂ and/or partial 5-HT_{1A} agonism

Antipsyc	hotic Adve	erse Effec	ts
Extrapyramidal symptoms	Metabolic symptoms Weight gain Glucose intolerance Lipid abnormalities	QTc prolongation	Hyperprolactinem
Sedation	Orthostatic hypotension	Anticholinergic effects	Sexual dysfunction

17 18


Schizophrenia: Pathophysiology

- · Heterogenous and not fully understood
- · Anatomical changes
- · Neurotransmitter changes:
- Dopamine (DA):
 DA hyperactivity in mesolimbic pathway→ positive symptoms
 - DA hypofunction in mesocortical pathway (frontal cortex) → negative and cognitive
- Dysfunction of serotonin, glutamate, GABA
- Cholinergic system dysfunction

Schizophrenia and the Cholinergic System

- · Cholinergic system plays role in multiple processes including sensory processing and perception, cognition, memory, emotional regulation, and motivation
 - Modulates dopamine release in striatum
 - · Acetylcholine acts on nicotinic channels and muscarinic receptors
- Evidence growing that schizophrenia is associated with changes in cholinergic neurotransmission
 - Lower cholinergic receptor levels = more severe clinical or cognitive symptoms
 - Significant decrease in muscarinic M1 and M4 receptor densities in striatum, hippocampus, and frontal and cingulate cortices

19

- FDA-approved for schizophrenia in September 2024
- Xanomeline: M1/M4 dual muscarinic receptor
 - Technically not considered an antipsychotic
 - Indirect effects on dopamine activity:
 - M1 agonism:
 - Improves dopamine signaling in cortex and striatum → reduces positive, negative, and cognitive symptoms

 - M4 agonism:

 Helps control excessive dopamine in mesolimbic pathway

 reduce positive symptoms and minimize motor adverse effects
 - Also stabilizes cognition via reduction in glutamate

20

Why Trospium?

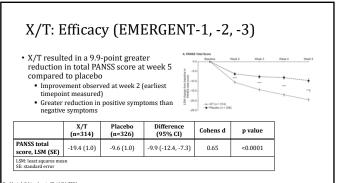
- · Xanomeline studied in 1990s for Alzheimer's disease
 - Significant improvement in cognition but high dropout rate related to ADEs

 - Significant improvement in cognition but high
 Most common ADEs:
 Nausea
 Vomiting
 Dyspepsia
 Increased salivation
 Diaphoresis
 Chills
 Elevated liver enzymes, biliary transaminase
- · Trospium = muscarinic receptor antagonist in peripheral tissues
 - Goal is to mitigate cholinergic ADEs of xanomeli
 Does not cross blood-brain barrier

21

22

Xanomeline/Trospium (X/T): Efficacy


	EMERGENT-1	EMERGENT-2	EMERGENT-3		
Trial phase	2 3 3				
Study duration	5 weeks				
Patient population	Adults 18-65 years* with schizophrenia with an acute exacerbation of psychotic symptoms requiring hospitalization within 2 months of screening Baseline PANSS total score ≥ 80 and ≤ 120 (moderately to severely ill) ²¹ Pertinent exclusion criteria: First-episode psychosis, history of resistance to antipsychotic treatment				
Study design	Randomized, double-blind, multi-site, inpatient, placebo-controlled				
Treatment	X/T vs. placebo twice daily (flexible dosing) Continued use of as-needed anxiolytics permitted				
Primary outcome	Change from baseline to week 5 in PANSS total score				
PANSS: Positive and Nega	and Negative Syndrome Scale				

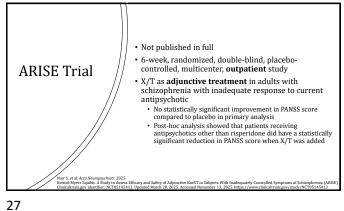
EMERGENT included adults 18-60 years

**Other criteria included score of 2-4 on at least 2 out of 4 PANSS positive scale items,
Clinical Global Impression-Severity score of 2-4

X/T: Efficacy (EMERGENT-1, -2, -3)

Pertinent baseline characteristics				
		X/T (n=314)	Placebo (n=326)	
Age (years), mean + SD		44.6 <u>+</u> 10.7	43.7 <u>+</u> 11.3	
	Male, n (%)	233 (74.2)	250 (76.7)	
	Asian	4 (1.3)	2 (0.6)	
	Black	225 (71.7)	221 (67.8)	
	Native Hawaiian or Oher Pacific Islanders	1 (0.3)	1 (0.3)	
	White	83 (26.4)	98 (30.1)	
	Other	1 (0.3)	4 (1.2)	
Un	nited States, n (%)"	295 (93.9)	300 (92.0)	
PANSS	total score, mean ± SD	97.5 <u>+</u> 9.0	97.0 <u>+</u> 8.9	
Other s	tudy site locations = Ukraine			

X/T: Efficacy in Open Label Studies


- 2 open-label extension studies:
 - EMERGENT-4 (53 weeks)
 - EMERGENT-5 (56 weeks)
- Non peer-reviewed results of EMERGENT-4 include:

 - Much lower completion rate (~23%) than EMERGENT-1, -2, and -3
 ~11% did not complete due to a treatment-emergent adverse effect (TEAE)
 - >50% experienced a TEAE
 - Continued improvements in PANSS scores
 - LSM improvement in PANSS score of 9.0 points for patients who had received X/T in the acute studies (n=19)

26

28

25

X/T: Safety (EMERGENT-1, -2, -3)

- Early trial discontinuation: 27.6% in X/T group and 22.7% in placebo group: · Most common reason = withdrawal of consent
- Most commonly reported treatment-emergent adverse effects (TEAEs) occurred within the first 7 days of X/T treatment and resolved by end of

%	X/T (n=340)	Placebo (n=343)
Early trial discontinuation due to TEAE	5.9	4.4
≥ 1 TEAE	67.9	51.3
Nausea	18.5	3.8
Constipation	17.1	6.1
Dyspepsia	15.9	4.7
Vomiting	13.5	1.7
Hypertension	8.5	1.7

Body weight changes: X/T: Safety Minimal, less than in placebo group (EMERGENT -1, -2, -3Movement disorders: Very rare • 1.5% in X/T group

X/T Dosing & PK

- Initial dosing:
 Xanomeline 50 mg/trospium chloride 20 mg by mouth BID for ≥ 2 days
 May then increase to xanomeline 100 mg/trospium chloride 20 mg by mouth BID for ≥5 days
- · Max dose:
- Xanomeline 125 mg/ trospium chloride 30 mg by mouth BID Dose adjustments:
- Not recommended in moderate or severe renal impairment, mild hepatic impairment Contraindicated in moderate to severe hepatic impairment
- PK parameters (xanomeline):
 - Absorption: 2 hours
 AUC increased ~30% by high-fat meal
 Hepatically metabolized via CYP450

 - Substrate of CYP2D6, CYP2B6, CYP1A2, CYP2C9, CYP2C19

 - Inhibitor of CYP3A4
 Excretion: 78% renal, 12% fecal
 - · Elimination half-life: 5 hours

30 29

X/T: Key Takeaways

- Statistically and clinically reduced PANSS total scores in three 5-week RCTs
 - Improvements in positive and negative symptoms
 - \blacksquare Results from open-label extension trials not fully available \Rightarrow long-term safety and efficacy not established
- Study assessing role as adjunctive treatment did not demonstrate statistically significant benefit (results not fully available)
- Most common TEAEs are gastrointestinal
 - Nausea, constipation, dyspepsia, vomiting
- Not associated with some TEAEs related to traditional antipsychotics
 - Movement disorders, weight gain

X/T: Current Place in Therapy

- Possible candidates for X/T may include adults with schizophrenia with:
 - Intolerable adverse effects from antipsychotics
 - Especially metabolic or movement-related
 - Cognitive impairment, negative symptoms → although more improvement in positive symptoms in trials

 Treatment-resistant? (adjunct)
- · Cost concerns
- List price: \$1850 for 30-day supply

32

31

Audience Question 4

Which of the following patients with schizophrenia would be the best candidate for treatment with xanomeline/trospium? (assume no other PMH)

- A. A 28 y/o patient who has been treated with 5 antipsychotics over the past 3 years and was recently started on clozapine
- B. A 21 y/o patient who was just diagnosed with schizophrenia and has never received treatment with an antipsychotic previously
- C. A 34 y/o patient who responded well to olanzapine but discontinued due to

Audience Question 4

Which of the following patients with schizophrenia would be the best candidate for treatment with xanomeline/trospium? (assume no other PMH)

- A. A 28 y/o patient who has been treated with 5 antipsychotics over the past 3 years and was recently started on clozapine
- B. A 21 y/o patient who was just diagnosed with schizophrenia and has never received treatment with an antipsychotic previously
- C. A 34 y/o patient who responded well to olanzapine but discontinued

33 34

Audience Question 5

Which adverse effect is more likely to occur during treatment with xanomeline/trospium compared to standard antipsychotics?

- A. Dystonic reactions
- B. Nausea
- C. Dyslipidemia
- D. Hyperprolactinemia

Audience Question 5

Which adverse effect is more likely to occur during treatment with xanomeline/trospium compared to standard antipsychotics?

- A. Dystonic reactions
- B. Nausea
- C. Dyslipidemia
- D. Hyperprolactinemia

Depression & Dextromethorphan

Major Depressive Disorder (MDD): Background

- One of the most common psychiatric disorders in the United States
 - Affects more than 1 out of 5 people (20.6% lifetime prevalence)
 ~60% receive treatment
- Most pts have ≥ 1 co-occurring condition
- · Medical, psychiatric, substance use disorders
- · High degree of morbidity
 - Loss of productivity, disability
 Decreased quality of life
 - High economic burden
- · Significant increase in mortality

38

37

MDD: Symptoms Sleep changes Loss of interest Guilt Energy changes Concentration Psychomotor agitation/slowing Suicidal ideation Appetite changes impairment or actions

MDD: Pathophysiology

- · Complex and heterogeneous
- Several hypotheses:
 - Monoamine hypothesis
 - Deficiencies in serotonin, norepinephrine, dopamine

 - Dysregulation hypothesis
 Dysregulation of neurotransmitters: Serotonin, norepinephrine, dopamine, glutamate, adenosine
 - Hypothalamic-pituitary-adrenal (HPA) axis dysfunction
 - Inflammatory hypothesis
 - Genetic/epigenetic anomaly hypothesis
- · Structural and functional brain remodeling

39

40

Audience Question 6

Which of the following are considered first-line treatments for MDD? Select all

- A. Vortioxetine (Trintellix)
- B. Fluoxetine (Prozac)
- C. Bupropion (Wellbutrin)
- D. Amitriptyline (Elavil)
- E. Dextromethorphan/bupropion (Auvelity)
- F. Esketamine (Spravato)
- G. Mirtazapine (Remeron)

Audience Question 6

Which of the following are considered first-line treatments for MDD? Select all

- A. Vortioxetine (Trintellix)
- B. Fluoxetine (Prozac)
- C. Bupropion (Wellbutrin)
- D. Amitriptyline (Elavil)
- E. Dextromethorphan/bupropion (Auvelity)
- F. Esketamine (Spravato)
- G. Mirtazapine (Remeron)

42 41

MDD Treatment Guidelines • Psychotherapy can be first-line for mild to moderate MDD


Place in Therapy Antidepressant or Antidepressant Class	
First-line	Selective serotonin reuptake inhibitors (SSRIs) Serotonin norepinephrine reuptake inhibitors (SNRIs) Bupropion Mirtzapine Vortioxetine Vilazodone Trazodone
Second-line	Switch to alternate first-line therapy Add a second antidepressant or augmentation (next slide) Tricyclic antidepressants (TCAs) Dextromethorphan-bupropion ¹
Electroconvulsive therapy may be appropriate at any stage	
"VA guidelines only "CANMAT guidelines only	

Augmentation Strategies

- Recommended adjunctive treatments differ across guidelines
- Common augmentation strategies:
 - · Non-pharmacologic therapies
 - Second-generation antipsychotics
 - IV ketamine
 - Intranasal esketamine
- Lithium
- · Triiodothyronine

44 43

First-Line Antidepressant Adverse Effects

Unique Bupropion Adverse Effects

- Rare risk of seizures (0.1-0.4%)
- · Insomnia, activation, anxiety
- Hypertension
- · Tachycardia
- Constipation
- Tremor
- Dizziness
- Xerostomia

45 46

Antidepressant Response

- First-line antidepressants take from 4 to 6 weeks to achieve an effect
- Many patients with MDD do not respond adequately to initial pharmacologic treatment
 - Approximately 1 in 3 patients will not achieve remission
- Treatment-resistant depression generally defined as ≥ 2 unsuccessful antidepressant trials

Audience Question 7

Current first-line pharmacologic treatment options for MDD act on which of the following neurotransmitters? Select all that apply.

- A. Serotonin
- B. Norepinephrine
- C. Dopamine
- D. Glutamate
- E. GABA

48 47

Audience Question 7

Current first-line pharmacologic treatment options for MDD act on which of the following neurotransmitters? Select all that apply.

- A. Serotonin
- B. Norepinephrine
- C. Dopamine
- D. Glutamate
- E. GABA

MDD: Pathophysiology

- Complex and heterogeneous
- Several hypotheses:

 - Monoamine hypothesis
 Deficiencies in serotonin, norepinephrine, dopamine

 - Dysregulation hypothesis
 Dysregulation of neurotransmitters Serotonin, norepinephrine, dopamine glutamate adenosine
 Hypothalamic-pituitary-adrenal (HPA) axis dysfunction
 Inflammatory hypothesis

 - Genetic/epigenetic anomaly hypothesis
 - Structural and functional brain remodeling

49

50

52

Glutamate and MDD

- Glutamate: Main excitatory neurotransmitter in CNS
- Activates N-methyl-D-aspartate (NMDA) receptors in neurons \rightarrow contributes to synaptic loss
 - Plays role in mediating interaction between CNS and astrocytes
- Pathogenesis of MDD linked to:
 - Abnormal glutamate levels in cortex
 - Abnormal NMDA receptor expression and signaling

51

NMDA Receptor Antagonists in MDD

IV ketamine

Intranasal esketamine

Dextromethorphan

DTX HBr/ • FDA-approved for MDD in 2022 **Bupropion HCl** • Dextromethorphan (DTX) mechanism of action in (Auvelity®) Non-competitive NMDA receptor antagonist · Sigma-1 receptor agonist Neuroprotective effects

Why Bupropion?

- DTX rapidly and extensively metabolized via CYP2D6
 - Limits bioavailability and clinical utility
- · Combination with bupropion (CYP2D6 inhibitor) increases plasma concentrations and prolongs half-life of DTX

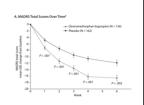
DTX/Bupropion: Efficacy

	GEMINI study	
Trial phase	3	
Study duration	6 weeks	
Patient population	Adults 18-65 years of age with MDD experiencing a depressive episode of ≥ 4 weeks and a MADRS score of ≥ 25 and CGI-S score ≥ 4 Pertinent exclusion criteria: Bipolar disorder, treatment-resistant depression, substance use disorder within past year, clinically significant risk of suicide	
Study design	Randomized, double-blind, placebo-controlled, multi-center	
Treatment	DTX-bupropion vs. placebo orally (once daily x 3 days then BID)	
Primary outcome Change from baseline to week 6 in MADRS total score		
MADRS: Montgomery-Asberg Depression Rating Scale CGI-S: Clinician Global Impression-Severity		

55 56

DTX/Bupropion: Efficacy

DTX/Bupropion: Efficacy


Response: 54.0% vs. 34.0%
Remission: 39.5% vs. 17.3%

Pertinent baseline characteristics					
		DTX/Bupropion (n=156)	Placebo (n=162)		
Age, r	nean y (SD)	42.1 (12.80)	41.2 (13.77)		
Ma	ile, n (%)	61 (39.1)* 45 (27.8			
White		84 (53.8)	92 (56.8)		
Race, n (%)	Black or African- American	58 (37.2)	54 (33.3)		
	Asian	9 (5.8)	8 (4.9)		
	Multiple	3 (1.9)	2 (1.2)		
	Other	2 (1.3)	6 (3.7)		
MADRS total score, mean (SD) 33.6 (4.43) 33.2 (4.36)					
*Significantly more males enrolled in treatment group vs. placebo					

• Significantly higher rates of response ($\geq 50\%$ reduction in MADRS) and remission (MADRS score $\leq 10)$ in DTX/bupropion group vs. placebo at week 6

DTX/Bupropion: Efficacy

- Primary endpoint: DTX/bupropion resulted in a 3.87 point greater reduction in MADRS score at 6 weeks compared to placebo
 Difference started at week 1
- Dropout rate 24.1% in treatment group vs. 10.4% in placebo group

	DTX/Bupropion (N=156)	Placebo (N=162)	LSM difference (95% CI)	p-value
MADRS total score change, LSM (SE)	-15.9 (0.9)	-12.0 (0.9)	-3.87 (-1.39 to -6.36)	0.002
LSM: least squares mean SE: Standard error				

sifescu DV, et al. J Clin Psychiatry. 2022.

57

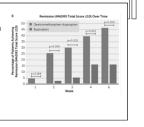
58

DTX/Bupropion: Safety

n (%)	DTX/bupropion (N=162)	Placebo (N=164)
Any adverse event	100 (61.7)	74 (45.1)
Adverse event leading to discontinuation	10 (6.2)	1 (0.6)
Dizziness	26 (16.0)	10 (6.1)
Nausea	21 (13.0)	14 (8.5)
Headache	13 (8.0)	6 (3.7)
Diarrhea	11 (6.8)	5 (3.0)
Somnolence	11 (6.8)	5 (3.0)
Dry mouth	9 (5.6)	4 (2.4)
Hyperhidrosis	8 (4.9)	0

DTX/Bupropion: Safety

- · No identified risk of:


 - Psychotomimetic effects
 Weight gain
 Sexual dysfunction
 - Suicidal behaviorsWithdrawal
- Carries the boxed warning regarding increased risk of suicidal thoughts and behaviors for patients <25 years of age

Is Bupropion Doing All the Work?

- Comparison of DTX/bupropion vs. bupropion alone showed significant improvements over 6 weeks with DTX/bupropion in:
 Change in MADRS

 - -13.7 points vs. -8.8 points

· Remission rates

61

However.....

- In an unpublished study comparing DTX/bupropion to bupropion in treatment-resistant MDD:
 - Statistically significant improvement in MADRS score in DTX/bupropion group at weeks 1 and 2 but results were not statistically significant at week 6

62

DTX/Bupropion Dosing & PK

- - Dextromethorphan HBr 45 mg/bupropion HCl 105 mg (1 tablet) by mouth once daily in morning x 3 days followed by:
 - 1 tablet by mouth BID given at least 8 hours
- · Dose adjustments:
 - Renal impairment (GFR 30 to 59 mL/minute/1.73m²): 1 tablet daily
 - GFR <30: Use not recommended
 Severe hepatic impairment: Use not recommended
 - Concomitant strong CYP2D6 inhibitors: 1 tablet daily
- Metabolism:
- DTX: CYP2D6
- Substrate of CYP2D6
- Bupropion: CYP2B6
 Inhibitor of CYP2D6
- Renal excretion
 - DTX: 45-83%
- Bupropion: 87% Elimination half-life:
 - DTX: 22 hours
- Bupropion: 15 hours

DTX/Bupropion: Key Takeaways

- DTX/bupropion demonstrated statistically and clinically meaningful reductions in MADRS total score in phase 3 trial compared to placebo
 - · Higher rates of response and remission
 - Improvements were observed **earlie**r than what is typically expected from traditional oral antidepressants
 - Patient population somewhat limited
- · Most common adverse effects include dizziness, diarrhea, nausea, and headache
 - Concerns about abuse → not observed in trial but excluded patients with substance use disorders

63 64

DTX/Bupropion: Current Place in Therapy

- · Second-line in CANMAT treatment guidelines
- May be appropriate for patients requiring more rapid symptom control or those with intolerable adverse effects from other antidepressants
- No published clinical trials have demonstrated role as an adjunctive medication or in:
 - Treatment-resistant depression
 - · Bipolar depression
- · Cost concerns:
 - ~\$1400 for 30-day supply

Audience Question 8

Which of the following patients with MDD would be the best candidate for treatment with dextromethorphan/bupropion?

- A. A pt who has been previously treated with escitalopram but discontinued due to sexual dysfunction
- B. A pt who has been previously treated with escitalopram, venlafaxine XR, and mirtazapine with inadequate response
- C. A pt with cocaine use disorder who has never received pharmacologic treatment for depression

Audience Question 8

Which of the following patients with MDD would be the best candidate for treatment with dextromethorphan/bupropion?

- A. A pt who has been previously treated with escitalopram but discontinued due to sexual dysfunction
- B. A pt who has been previously treated with escitalopram, venlafaxine XR, and mirtazapine with inadequate response
- C. A pt with cocaine use disorder who has never received pharmacologic treatment for depression

References

Tabuteau H., Jones A, Anderson A, Jacobson M, Iosifescu DV. Effect of AXS-05 (Dextromethorphan-Bupropion) in Major Depressive Disorder: A Randomized Double-Blind Controlled Trial. Am J Psychiatry. 2022;179(7):490-499. doi:10.1176/appi.ajp.21080800 Snaith RP, Harrop FM, Newby DA, Teale C. Grade scores of the Montgomery-Asberg Depression and the Clinical Anxiety Scales. Br J Psychiatry. 1986;148:599-601. doi:10.1192/bjp.148.5.599

losifescu DV, Jones A, O'Gorman C, et al. Efficacy and Safety of AXS-05 (Dextromethorphan-Bupropion) in Patients With Major Depressive Disorder: A Phase 3 Randomized Clinical Trial (GEMINI). J Clin Psychiatry. 2022;83(4):21m14345. doi:10.4088/JCP21m14345 Eskandari K, Bélanger SM, Lachance V, Kourrich S. Repurposing Sigma-1 Receptor-Targeting Drugs for Therapeutic Advances in Neurodegenerative Disorders. Pharmaceuticals (Basel). 2025;18(5):700. doi:10.3390/phl8050700

Majeed A, Xiong I, Teopiz KM, et al. Efficacy of destromethorphan for the treatment of degression: a systematic review of preclinical and clinical trials. Expert Opin Emerg Drugs. 2021;26(1):63-74. doi:10.1080/j.147.8214.20211.898588 Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):70-75. doi:10.1016/j.pmpbp.2008.10.005

Moriguchi S, Takamiya A, Noda Y, et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry. 2019;24(7):952-964. doi:10.1038/s41380-018-0252-9 Voineskos D, Daskalakis ZI, Blumberger DM. Management of Treatment-Resistant Depressio 2020;16:221-234. doi:10.2147/NDTS198774

Lam RW, Kennedy SH, Adams C, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2023 Update on Clinical Guidelines for Management of Major Depressive Disorder in Adults. Reseas canadien pour lest ratherments de l'humeur et del manueur de CANMAT 2025. Mises DE CANMAT 2025.

Cui L, Li S, Wang S, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024;9(1):30. doi:10.1038/s41392-024-01738-y

Zhang Z, Jackson SL, Gillespie C, Merritt R, Yang Q. Depressive Symptoms and Mortality Among US Adults. JAMA Netw Open. 2023;6(10):e2337011. doi:10.1001/jamanetworkopen.2023.37011

67 68

References

Hasin DS, Sarvet AL, Meyers JL, et al. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry. 2018;75(4):336. doi:10.1001/jamapsychiatry.2017.4602 Ramey Ol., Silva Almodóvar A. Xanomeline-Trospium: A Novel Therapeutic for the Treatment of Schizophrenia. Ann Pharmacother 2025;59(10):937-950. doi:10.1177/10600280251324642

Kaul I, Sawchak S, Claxton A, et al. Efficacy of xanomeline and trospium chloride in schizophrenia: pooled results from three 5-week, randouduble-blind, placebo-controlled, EMERGENT trials. Schizophrenia (Heidelb). 2024;10(1):102. doi:10.1038/s41537-024-00525-6 Kaul I, Claxton A, Sawchak S, et al. Safety and Tolerability of Xanomeline and Trospium Chloride in Schizophrenia: Pooled Results From the 5-Week, Randomized, Double-Blind, Placebo-Controlled EMERGENT Trials. J Clin Psychiatry. 2025;86(1):24m15497. doi:10.4088/JCP.24m15497. Brannan SK, Sawchak S, Miller AC, Lieberman IA, Paul SM, Breier A, Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N Engl J Med. 2021;364(8):717-726. doi:10.1036/NEJMoa2017015

Shekhar A, Potter WZ, Lightfoot J, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry. 2008;165(8):1033-1039. doi:10.1176/appi.ajp.2008.0691591

Breier A, Brannan SK, Paul SM, Miller AC. Evidence of trospium's ability to mitigate cholinergic adverse events related to xanomeline: phase 1 study results. Psychopharmacology (Berl). 2023;240(5):1191-1198.doi:10.1007/s00213-023-00562-2

results. PsychopharimaCology Berr, 2012;24(4);5119-1198. doi:10.1007/3002.13-022-08-05-02.
Boldelin N.C. (Birth Service) Act a child Reference of the Service of the Service Service of the Service Se

Saint-Georges Z. MacDonald J. Al-Khalili R, et al. Cholinergic system in schizophrenia: A systematic review and meta-analysis. Mol Psychiatry. 2025;30(7):3301-3315. doi:10.1030/s/s1300-025-03023-y Velligan Dl. Salatoyic M, Hatch A, Kramata P. Docherty IP, Why do psychiatric patients stop autiosychotic medication? A systematic review of doci 10.2147/PPR-S214658.

Acosta FI, Hernández JI., Pereira J, Herrera J, Rodríguez CJ. Medication adherence in schizophrenia. World J Psychiatry. 2012;2(5):74-82. doi:10.5498/wjp.v2.15.74

References

Barnes TR, Drake R, Paton C, et al. Evidence-based guidelines for the pharmacological treatment of schizophrenia: Updated recomme the British Association for Psychopharmacology. J Psychopharmacol. 2020;34(1):3-78. doi:10.1177/0269881119889296

Robison AJ, Thakkar KN, Diwadkar VA. Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate. Biol Psychiatry. 2020;87(3):204-214. doi:10.1016/j.biopsych.2019.09.021

Hui CLM, Honer WG, Lee EHM, et al. Long-term effects of discontinuation from antipsychotic maintenance following first-episode schizophrenia and related disorders: a 10 year follow-up of a randomised, double-blind trial. The Lancet Psychiatry. 2018;5(5):842-842. doi:10.1016/52215-

McGrath J. Saha S. Chant D. Welham J. Schizophrenia: A Concise Overview of Incidence, Prevalence, and Mortality. Epidemiologic Reviews. 2008;30(1):67-76. doi:10.1093/epirev/mxx001

Benrimoh D, Dlugunovych V, Wright AC, et al. On the proportion of patients who experience a prodrome prior to psychosis onset: A systematic review and meta-analysis. Mol Psychiatry. 2024;29(5):1361-1381. doi:10.1038/s41380-024-02415-w Vita A, De Peri I, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry. 2012;2(11):e190. doi:10.1038/tp.2012.116

Olfson M, Gerhard T, Huang C, Crystal S, Stroup TS. Premature Mortality Among Adults With Schizophrenia in the United States. JAMA Psychiatry. 2015;72(12):1172-1181. doi:10.1001/jamapsychiatry.2015.1737

 $Finnerty\,MT,Khan\,A,You\,K,\,et\,al.\,Prevalence\,and\,incidence\,measures\,for\,schizophrenia\,among\,commercial\,health\,insurance\,and\,medicaid\,enrollees.\,Schizophrenia\,(Heidelb).\,2024;10(1):68.\,doi:10.1038/941537-024-00490-0$

69 70

Breaking the Mold: Novel Mechanisms in Psychiatry's New Kids on the Block

Kristin Waters, PharmD, BCPS, BCPP Associate Clinical Professor University of Connecticut School of Pharmacy Session Code